
 Page 1/8

System architecture, tools and modelling for safety critical
automotive applications – the R&D project SASHA

J. Langheim, B. Guegan1, L. Maillet-Contoz1, K. Maaziz2, G. Zeppa2, F. Philippot4, S. Boutin3,
H. Aboutaleb3, P. David5

1: STMicroelectronics
2: Delphi

3: Knowledge Inside
4: ESG France

5: Université de Technologie de Compiègne

Abstract:

Keywords: functional safety, model based design,
mechatronics, driver assistance, development tools,
dependability, system architecture partitioning,
multiple core architecture

1. Introduction

The number of safety critical functions in automotive
applications is increasing, especially vehicle dynamic
controls, driver assistance functions and the
introduction of mechatronics in braking, steering or
motor control. As a result there is a need for an
improved structured approach in development phase
to overcome additional complexity. Indeed,
functional safety needs to be included at a very early
stage in the development process of systems and
their components.

To tackle these challenges, automotive industry
partners currently set up the ISO 26262 standard,
detailing an automotive safety lifecycle supporting
the development of road vehicles. This standard built
upon IEC 61508, focuses on Electric/Electronic (E/E)
Systems but provides a general framework for
safety-related systems design. The efficient
deployment of this standard within automotive
companies is a crucial task in order to maintain the
competitiveness of these organizations on the future
automotive market.

SASHA (Safety check of Automotive Software &
Harware Architectures) is an opportunity to apply
ISO26262 development methodology to an
automotive safety critical subsystem and for each
partner involved in SASHA, to further improve and
validate their own product roadmaps to address
ISO26262.

However, the introduction of this new standard
requires a change in the development process, in
the communication between the partners in the
supply chain and the development of new tools
helping to minimize the impact of additional
requirements on the development process through
this new standard.

The SASHA project has been set up around six
complementary partners
- Renault, the vehicle manufacturer and final

customer for a safety critical function
- Delphi with its diesel engine department, maker

of the function
- STMicroelectronics,supplier of automotive

components
- Knowledge Inside, Tools and Services Provider
- ESG France, complex electronic system

consultant, experienced in automotive and
aeronautic systems

- UTC Compiegne, research center skilled in
hardware and software co-design

Each partner is bringing its own experience in
automotive safety critical system to validate new
tools and methodologies inspired by new automotive
safety standard. The SASHA use case is based on a
diesel engine torque control and the whole project
focuses on:

- Common reading and modeling of ISO26262
- Model based system engineering
- Semiconductor transaction level model
- Semiconductor new safety oriented

architectures
- Supporting the process with ArKItect

innovative tool

This article will first expose the challenges of safety
critical automotive applications, before presenting
the SASHA use case. Then, the Model Based
System Engineering (MBSE) approach, which
frames the ISO 26262 application in SASHA, will be
introduced. The ArKItect tool supporting this
methodology is detailed followed by the introduction
of the TLM language used for microcontrollers
design and validation within SASHA developments.

2. The safety critical automotive challenge

2.1 safety critical systems in automotive
Systems are safety critical, if their failure may have a
consequence on the human life. Depending on
severity, exposure and controllability of a failure

 Page 2/8

different levels of automotive safety integrity are
defined (ASIL = Automotive Safety Integrity Level).
Levels range from A to D, with criticality increasing
from A to D. Depending on this level, certain rules of
development and documentation have to be
followed.
Examples for safety critical systems are obviously
braking, steering and motor control, but also
functions like lighting and windscreen cleaning.
These “basic” functions are used by driver
assistance systems (DAS) like autonomous parking
systems, adaptive cruise control or emergency
braking.
The development of such systems needs today
years of validation. Validation driving of a “simple”
adaptive cruise control (ACC) system needs more
than 3 man years of driving on the roads. ACC is
simple in the way that it does not address extreme
situations. Only a certain percentage of the braking
force is applied, distances to other cars are
comfortable and the driver has a lot of time to react
in hazardous situations. However, each time a new
application is created, new tests have to be
performed and non-regression has to be assured
between software and hardware modifications. ACC
has started in premium vehicles and it took some
time to arrive in lower segments. Today, ACC is a
common option in many vehicles.
The development of a system that goes further
towards “responsibility” of the technical function
needs obviously more validation and re-use become
more crucial.
Electric vehicles offer today the possibility to brake
electrically up to a certain point, where a mechanical
brake needs to add braking force. We all have
followed with attention the success but also the
difficulties of electric and hybrid cars today already
available on the market.
Further significant improvements and the
introduction of new topologies will further increase
the variety of solutions.
For example the introduction of electric vehicles with
wheel motors and integrated stability control offer the
possibility to limit mechanical braking to an
emergency brake.
In case of accident, the state of art of technology,
development and the results of the validation have to
be proven meaning a lot of documentation to be
presented. Everything has to be checked. In many
cases original equipment manufacturers (OEM = car
manufacturer) have to assemble at posterior their
documentation for legal cases. Following
harmonized rules and adapted tools help to find
synergies between developments and re-use of
already existing elements.

2.2 ISO26262 model in SASHA project

The structure of the standard is already process
oriented. It follows the V model activities. So each
clause can be easily translated into a task. The

standard covers the whole life cycle of the system
development. It includes the system view which is
then broken down into hardware and software views.
The safety aspects during the production, the
maintenance and the decommissioning are also
taken into account.

In order to prove the compliance of the development
process to the standard all work has to be
documented. Within the SASHA project the focus
was at first on the description of all tasks for
traceability.

During the development process proposed in
SASHA, all these activities and tasks are then
implemented inside the tool ArKItect. The process
and the different views of the system are merged
inside this tool. Current tools on the market usually
separate the modelling of the process and the
modelling of the system. ArKItect can merge these
both views into a single tool. In fact each process
step should correspond to a specific view of the item.
Each requested information in the work products are
captured from the modelling artefact of the item. The
tool should at the end be able to generate
automatically all requested documents and then
deliver the safety case proving that the system
respects the safety goals.

An additional feature of the tool is the tailoring of the
development of safety process according to the
category of the item (proven in use, modification of
an existing item or completely new item).

SASHA will also study the possibility to integrate the
safety process of the standard inside an existing
development process (SPICE, V model …).

2.3 Semiconductor new horizon

Automotive market demands are driving the
automotive semiconductor technologies to
continuously innovate.

Next-generation automotive systems will increasingly
require multiple power technology mix, more
computational performance, better power efficiency
and greater memory content to meet market
requirements in automotive applications, such as
functional safety, tougher emission standards or
ADAS (Advanced Driver-Assistance Systems)
solutions.

Overall semiconductor technology shrinks offer
opportunities for new automotive system
architectures compliant with new stringent safety
automotive standard such as ISO26262. It goes from
an optimized system partitioning between smart
power devices and full digital embedded flash
microcontrollers to the duplication of a complete
subsystem to match toughest safety expectation.

 Page 3/8

Semiconductor companies have been offering
automotive grade components for years. The new
global trend is to offer "fit for purpose" ASIL level
automotive grade components. This new product
range will ease the development and certification
process of automotive safety critical system
suppliers.

Multiple core architecture devices for automotive
embedded systems are becoming a standard,
thanks also to advance processes such as 55nm
automotive embedded flash process. For complex
systems or sub systems, it is now very important to
offer to developers virtual models of those complex
systems in order to allow fast development and
integration between multiple teams.
Virtual models are also a convenient environment for
fault injections to monitor the reactions of the
systems. One objective of safety critical system is to
be able to detect faults and to confine them.

3. SASHA use case

Diesel Engine Management controllers have
embedded safety related functions especially the
torque structure which from the Driver’s accelerator
pedal will determine the correct fuel injection to
provide engine and vehicle acceleration .
The unwanted vehicle acceleration through engine
torque increase event has lead to system and
software architectures which now embed software
monitoring functions in the ECU.

Figure 1 : Global ECU Torque Control

The purpose of the Monitoring Concept as shown in
Figure 1 is to monitor the main application to prevent
the driver from unwanted acceleration. Moreover its
second purpose is to monitor the torque demand
computed by main application torque structure.

That monitoring concept includes the actual torque
calculation, the permissible torque calculation, the
torque comparison and the fault management and

related default modes as describe precisely in Figure
2 & 3.

To avoid single CPU errors, monitoring requires
multiple levels and especially an independent control
of the main controller. (ASICs or secondary micro).

Figure 2 : Torque Monitoring Concept / Functional
View

Figure 3 : Torque Monitoring Concept / Abstraction
Level

Dual core CPU are an opportunity to reduce cost of
multiple components, increase quality and also
provide potential new solutions for monitoring
concept architecture depending on multicore
symmetric or asymmetric design. However, inside
the SASHA project, there is no intent to modify the
actual monitoring concept solution and architecture,
but to use this function as a base for validating the
process.

The Torque structure being linked to a set of major
functions, only a partial set of those modules will be
used for validating the process.

With ISO26262, the various safety related events
and safety goals are defined and monitored along all
development phases of the software through
requirements traceability, from Design to validation.
Conformance to the standard will require specific
activities, work products and traceability.

Monitor
Module

Cutting
injection

RESET

RESET

Injectors
driver

Cutting
injection

Communication

Injection
feedback
reading

ECU

sensors

Injector Drive

Main
Microcontroller

Clock signal

Function Controler
(FC)

Reduced
torque

Injection
pulses read

sensors actuatorsTorque structure

Injection
cutoff

ESM Torque Monitoring

Monitor module
(MM)

Communication

LE
VE

L
3

FC
Reset

MM
Reset

Injection
cutoff

Question
Answer

LE
VE

L
2

LE
VE

L
1

Level 2

Level 3

- Level 1 monitoring
Continuous torque monitoring

0 torque monitoring

Application Sensor signals Actuator signals

Level 1

- Level 2 monitoring
PFC & L2P

- Hardware monitoring:
ADC tests

Memory integrity tests
Injection module test

Cutting injection monitoring

 Page 4/8

Although our example is already an existing support
for the ISO26262, other unwanted events, leading to
safety goals, will be brought up as requirements,
being in the Engine Management Systems or other
vehicle ECU’s in power train or body controllers.

4. Model Based System Engineering in an ISO
26262 context

4.1 New challenges for safety-critical systems
development

In the safety lifecycle proposed by ISO 26262, safety
is taken into account since the very beginning of the
system development. Therefore, mechanisms have
to be set up to support the management of safety
objectives throughout the project realization, in order
to ensure their monitoring and consistent refinement.
One of the emerging challenges in this context, is to
be capable of efficiently navigate among the
granularity levels needed for system design and
validation, and to adapt and clarify the safety
requirements for the various detail levels. ISO 26262
provides processes and requirements to frame the
design of safety-related systems in road vehicles. It
informs about the appropriate method to be used,
corresponding to the desired target ASIL deploying
the automotive safety lifecycle using semi formal
modelling approaches. Moreover, the constraints
linked to the development of future safe vehicle
functions are well known: higher complexity, shorter
time to market, restricted costs, high confidence
level expected. Moreover, their increasing
complexity stresses new issues as facilitating the
communication between domain-specific experts’
teams, organizations, stakeholders, certification
representatives, enhancing studies experience
capitalization or ensuring consistency between the
diverse system views exploited during the
development cycle. Therefore, the various tasks
involved in the safety lifecycle shall be realized with
elaborated engineering practices supporting all
stakeholders’ actions. Consequently, partners of the
SASHA project assume that Model Based System
Engineering (MBSE) practices are relevant to fulfil
project aims and in particular to develop the SASHA
framework supporting ISO 26262 deployment. In this
section, the MBSE concept used in SASHA will be
explained. In particular, the granularity level to reach
in the system modelling and the management of
safety requirements will be addressed.

4.2 Model Based System Engineering in SASHA
project

MBSE is the formalized application of modelling to
support system requirements, design, analysis,
verification and validation activities beginning in the
conceptual design phase and continuing throughout
development and later life cycle phases [4]. MBSE

enhances classic System Engineering in many
domains as communication, preciseness of analysis,
results integration or produced knowledge reuse.
The expected benefits of MBSE deployment have
been summarized in [1]:

• Reduced development risks.
• Enhanced communication.
• Improved quality.
• Increased productivity.
• Enhanced knowledge transfer.

A methodology is needed to implement MBSE. A
MBSE methodology can be characterized as the
collection of related processes, methods, and tools
used to support the discipline of systems
engineering in a “model-based” or “model-driven”
context [2]. This definition raises the key role of the
system model, in direct contact with the methods
forming the methodology. In the terminology utilized
here the methods are exposing the techniques to
use to realize the tasks defined in the System
Engineering process. Models and tools are
supporting the execution of the method. A valuable
survey of MBSE methods can be found in [2]. [1] has
drawn up the organization of MBSE models and
tools as shown in figure 2. This organization
illustrates the central place of a model offering
several views on the system: the architecture, the
behavior, requirements and constraints explicating
physical or trade off study relations verified by the
system. The central model is a gateway towards the
specific activities as detailed conception concerning
domain specific development and analysis tasks
including the dependability and safety criterion
observation. The model is also used to reflect and
respond to requirements emanating from
stakeholders, and is a basis to extract viewpoints
serving to produce contractual and normative
documents. The central model is the crossroads
between requirements, the detailed solutions to
match them, the analysis to assess their completion
and the documentation tracking their expression and
fulfillment.

To apply these concepts to the SASHA project, it
was necessary to identify the required models for
system description and the way to apply ISO 26262
requirements on them. Therefore, a combination of
languages, data structures and tools must be
provided as SASHA projects outputs.The data
structures express the set of artefacts needed for the
standard application, each of them represent a
concept to manipulate (e.g. a hardware component,
a requirement, a test), they are characterized by a
set of attributes (e.g. for requirements: associated
safety goal, ASIL, associated components ...).

 Page 5/8

Figure 4: MBSE organization (adapted from [1])

The languages are employed to declare the
preceding artefacts and the tools are provided to
create the modelling elements, represent, exploit,
analyse, maintain and manage them.

Within the SASHA project, the ArKItect tool is
supporting the realization of the central model. The
tool is based on customizable modelling artefacts. It
means that concepts used in the modelling are freely
defined to conform to SASHA needs. Therefore, we
are constructing a SASHA metamodel comprising
the entities we need to execute ISO 26262 activities.
Particularly, the central model is to be used to initiate
the validation and detailed design steps. Concerning
microcontroller architecture definition, thanks to the
partners’ expertise, we decide to couple the ArKItect
model with TLM definitions (presented in section 6).
This integration will illustrate the deployment of a
MBSE approach, combining the project leading
model and domain specific representations for
hardware and software design and validation.

5. Developments tools / Arkitect

Traditionally, requirements capture and elicitation
follows a top-down approach, while the design and
implementation of trustworthy systems follows a
bottom-up approach, enabling systems designers
and builders to certify desirable safety invariants of
the system in a holistic manner.

Given that a norm like 26262 involves many
stakeholders, at different levels, to take safety into
account since the very beginning of the system
design and development, a cooperative tool is
necessary to address such system complexity, by
following the processes provided by the norm.
ArKItect is an innovative tool that fulfils these needs.
It is a graphical, user-friendly, and type-based tool

that assists system designers
and builders in the entire
design and development
cycle. Its flexibility enables it
to implement the norm 26262
for any system, especially
engine management system
as in SASHA project. In this
section, we overview
ArKItect, highlight its main
features, and illustrate how it
could be used in applications.

5.1 ArKItect Features
ArKItect is like SysML, a
graphical tool used to support
system engineering. It is
based on system engineering

fundamentals and standards:

• ISO 15288 and EIA632
• System theory: The architecture of

complexity [5]
Moreover it has some specific properties that could
be noted, since it can:

• Represent graphically a system architecture
hierarchically

• Represent graphically requirements
(customer needs and system requirements)

• Interface with other tools used to support
system engineering (Word, Excel, XML,
Doors, Matlab, Simulink…)

It is also a graphics editor for the D2 level Domain
Specific Diagram Languages (DSL) which can
represent all types of diagrams [6].

D2 –
Diagram
DSL

At the D2 level, the Diagram DSL
represents the language for describing any
type of diagrams. It is solution - and
platform- independent and contains all
criteria understandable by a user who
wants to specify diagrams. This level is
problem-oriented for specifying diagrams.

D1 –
Diagram
DSL
instance

At the D1 level, a Diagram DSL instance
describes a type of diagram. It contains the
view model description for producing a
type of diagram that is model elements to
be displayed with their layout properties.
This description respects the language
defined by the Diagram DSL. This level
contains all data for generating tools
producing diagrams.

D0 –
Diagram

At the D0 level, we have diagrams
expected by end-users in their modeler.

In ArKItect, D2 corresponds to the rule matrix, D1
corresponds to the views, and D0 corresponds to the
architecture or model represented.

 Page 6/8

5.2 SASHA Project
A view is dedicated to the norm 26262 with all its
processes.

In Fig. 5 all processes and deliverables are
represented. Each deliverable is generated
automatically, provided that objects related to the
deliverable are represented.
Using ArKItect views-feature, the system is
represented at its different levels, depending on the
degree of atomicity needed. This is done by
modeling the system hierarchically, representing the
susbsytems and components. These components
could be software and/or hardware components.
Thanks to this feature, software and hardware
components can be treated independently. For each
component/subsystem, the corresponding process in
the norm 26262 is applied. Tests at each level are
defined, errors injected, and fault trees obtained.
Results are represented in the view, and
corresponding deliverable is generated. By this way,
all the documents needed are generated
automatically.

Figure 5: ArKItect processes view

Finally, by using ArKItect collaborative feature,
different stakeholders can involve at the same time
from different places to work on the project. This
enables suppliers from different ranks and
constructors to work together efficiently.

6. The Transaction Level Modelling (TLM)
approach

6.1 Key features of TLM models

Transaction-level modelling (TLM) is a novel
technique motivated by the practical need of
providing an early virtual prototype [7]. These
models are written in SystemC [8], a class library on
top of C++, using the TLM standard communication
APIs [9], with the following features:

1. High simulation speed: 100x to 1000x
improvement compared to RTL as a matter of
thumb are observed, enabling pre-silicon
software development and interactive activities
(e.g. software debug)

2. Model accuracy: bit accuracy and register
accuracy are required, as well as the
representation of the system synchronization
events [10]. Timing accuracy is not always a
strong requirement: functional software
development or functional validation may be
operated with loosely timed models, whereas
time accurate models may be required to
optimize software implementation or deal with
some real-time aspects of the system.

3. Early availability: to enable pre-silicon activities,
high level models must be available early. The
usual target is 6 months before the availability
of RTL models

6.2 Use models
Virtual prototypes based on the TLM approach are
used for the following internal activities:

• Functional verification.
Reliability of the SoCs is
obviously a key factor,
and is required to gain
the time to volume
challenge. Therefore,
improving the functional
verification process,
either by reducing the
verification time, or
extending the verification
coverage is a strategic
axis. Moreover, getting a
unified verification
environment at different
levels of abstraction
(RTL, TLM), improves
the process by reusing
the same test bench

either on the TLM and the RTL models.
• Embedded software development. To improve

the overall design cycle, early embedded software
development enables real hardware/software co-
design. The gain is twofold: first, early software
development helps to identify specification
misunderstanding between software and
hardware teams, by sharing the same executable
specification. Second, software developers are
able to develop and debug their embedded code
on a simulation platform that is easier to
instrument than the real hardware. This platform
can be delivered to all and every developers, and
can be used for debug purpose, even when the
actual chip is available.

• System analysis. In an early phase of the design
process, it is also very useful to investigate
different functional scenarios.

 Page 7/8

TLM models might also be delivered to the end
customer, as it will enable also its pre-silicon
activities, like development of compliance tests or
anticipation of system derivatives.

6.3 Contribution of TLM models to safety-critical
system development

Developing a TLM model is an important step to get
a non ambiguous, executable specification of the
System-on-chip. It helps identifying potential
inconsistency in the system specification, and it
avoids misinterpretation of the specification by the
various project stakeholders (architects, software
and hardware design teams, etc).
A key question when developing such models is
about the consistency between the TLM models,
other views of the same specification at other levels
of abstraction, and the associated software stack.
Using the IP-Xact standard [11], it is now possible to
share a representation of an IP and generate header
files targeting software activities and TLM model
skeleton. The model itself is used as a golden model
for functional verification of the RTL IP. As a
consequence, non regression test suites can be
applied both on the TLM model and RTL IP to
ensure functional equivalence. Use of formal
methods is also considered to validate the model
whatever the input scenario [12,13].

In a safety-critical system development, faithfulness
of TLM model is of major importance. Indeed, the
execution of the application software on top of the
model should match at least with the behaviour
observed on the real silicon. A key advantage of the
model is its observability and controllability, as it will
help software teams to validate the software stack. It
is also possible to enable some advanced validation
mode, where corner cases can be more easily tested
than on the silicon.
To increase the validation of safety-critical systems,
TLM models can also be equipped with fault models,
to test software robustness. Faults can be injected
either on the memory subsystem or on the
interconnect model when transactions are going
thru. Fault models are built in tight cooperation with
technologists, who are collecting experimental
results related to physical parameters.
Last but not least, TLM models can also be used to
get prepared in a certification process, and anticipate
some certification steps with certification authority on
the model, before the equipment is effectively
available.

7. Results so far

The group has reached a common understanding
and interpretation of the ISO26262. The standard
has been translated into a spreadsheet and
modelized in a flowchart diagram.

The used case has been defined with a focus on the
safety critical feature. Safety related events and
safety goals have been listed.
Various tools have been exchanged within the
group, ArKItect, component models, virtual
development environment platforms. Training
sessions have been done on ArKItect, electronics
component modelization, virtual platform usage.
Focus has been done on methodology re-use.

8. Conclusion

Still at the early stage of the SASHA project, new
tools for automotive safety critical system
development are showing promising results.
ArKItect is offering a unique environment for
specification, model implementation development
and validation compliant with latest automotive
safety standard.
TLM is a technique to reduce development time and
cost for microcontroller implementations. Such
development methodology has been already
successfully deployed and applied in other industrial
sectors such as telecom or consumer. For
automotive domain it is a suitable environment to
simulate fault injections and monitor the system
behaviour under stress. The generally observed
anticipation time is about 6 months.
SASHA is a project involving complementary
partners leveraging on MBSE know-how in a
cooperative and cross experienced environment
contributing to a better understanding of the new
ISO26262.

9. Acknowledgement

The authors acknowledge the contribution of all
involved and sometimes not cited colleagues to this
work. Special thanks of course to the French
Government with its DGCIS Office, who has
accepted to fund this important project.

10. References
[1] [Friedenthal et al. 2008] Friedenthal, S. Moore, A. &

Steiner, R. A Practical Guide to SysML : The Systems
Modelling Language. The MK/OMG press,
Elsevier.2008

[2] [Estefan 2008] Estefan, J. Survey of Model-Based
Systems Engineering (MBSE) Methodologies, Rev. B.
INCOSE MBSE Initiative, 23 Mai 2008. 2008

[3] ISO 26262. International Organization for
Standardization. Road Vehicles functional Safety.
Standard under development.

[4] [INCOSE 2007] International Council on Systems
Engineering. Systems Engineering Vision 2020.
Version 2.03, TP-2004-004-02, Septembre 2007.

[5] H.A.Simon, The Architecture of Complexity, 1962.
[6] B. Langlois, D. Exertier, G. Devda, Toward Families of

QVT DSL and Tool, 2006.
[7] F. Ghenassia, Transaction-Level Modeling with

SystemC: TLM Concepts and Applications for

 Page 8/8

Embedded Systems. Springer-Verlag New York, Inc.,
2006.

[8] IEEE Standard SystemC Language Reference Manual,
December 2005. [Online]. Available:
http://standards.ieee.org/getieee/1666/download/ 1666-
2005.pdf

[9] OSCI TLM-2.0 Language Reference Manual [online]
http://www.systemc.org/downloads/standards

[10] M. Moy, F. Maraninchi, and L. Maillet-Contoz, “LusSy:
an open tool for the analysis of systems-on-a-chip at
the transaction level,” Design Automation for
Embedded Systems, 2006, special issue on
SystemC-based systems. [Online]. Available:
http://www-verimag.imag.fr/~moy/publications/springer.pdf

[11] IP-Xact 1.5 [online]
http://www.spiritconsortium.org/tech/docs

[12] M. Moy, “Techniques and tools for the verification of
systems-on-a-chip at the transaction level,” Ph.D.
dissertation, INP Grenoble, December 2005.

[13] Ferro, L.; Pierre, L.; Ledru, Y.; du Bousquet,
L.; “Generation of test programs for the assertion-
based verification of TLM models”, Design and Test
Workshop, 2008. IDT 2008

11. Glossary
ACC Adaptive Cruise Control
ADAS Advanced Driver Assistance System
ASIL Automotive Safety Integrity Level
ESP Electric Stability Programme
EPS Electric Power Steering
EV Electric Vehicle
RTL Register Transfer Logic
TLM Transaction Level Model
MBSE Model Based System Engineering
OEM Original Equipment manufacturer
 (Car Manufacturer)
VHDL Very High Speed IC Hardware Description

Language

