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1. Introduction 

The number of safety critical functions in automotive 
applications is increasing, especially vehicle dynamic 
controls, driver assistance functions and the 
introduction of mechatronics in braking, steering or 
motor control. As a result there is a need for an 
improved structured approach in development phase 
to overcome additional complexity. Indeed, 
functional safety needs to be included at a very early 
stage in the development process of systems and 
their components. 
 
To tackle these challenges, automotive industry 
partners currently set up the ISO 26262 standard, 
detailing an automotive safety lifecycle supporting 
the development of road vehicles. This standard built 
upon IEC 61508, focuses on Electric/Electronic (E/E) 
Systems but provides a general framework for 
safety-related systems design. The efficient 
deployment of this standard within automotive 
companies is a crucial task in order to maintain the 
competitiveness of these organizations on the future 
automotive market.  
 
SASHA (Safety check of Automotive Software & 
Harware Architectures) is an opportunity to apply 
ISO26262 development methodology to an 
automotive safety critical subsystem and for each 
partner involved in SASHA, to further improve and 
validate their own product roadmaps to address 
ISO26262.  
 
However, the introduction of this new standard 
requires a change in the development process, in 
the communication between the partners in the 
supply chain and the development of new tools 
helping to minimize the impact of additional 
requirements on the development process through 
this new standard. 

 
The SASHA project has been set up around six 
complementary partners 
- Renault, the vehicle manufacturer and final 

customer for a safety critical function 
- Delphi with its diesel engine department, maker 

of the function 
- STMicroelectronics,supplier of automotive 

components 
- Knowledge Inside, Tools and Services Provider 
- ESG France, complex electronic system 

consultant, experienced in automotive and 
aeronautic systems 

- UTC Compiegne, research center skilled in 
hardware and software co-design 

 
Each partner is bringing its own experience in 
automotive safety critical system to validate new 
tools and methodologies inspired by new automotive 
safety standard. The SASHA use case is based on a 
diesel engine torque control and the whole project 
focuses on: 

- Common reading and modeling of ISO26262 
- Model based system engineering 
- Semiconductor transaction level model 
- Semiconductor new safety oriented 

architectures 
- Supporting the process with ArKItect 

innovative tool 
 
This article will first expose the challenges of safety 
critical automotive applications, before presenting 
the SASHA use case. Then, the Model Based 
System Engineering (MBSE) approach, which 
frames the ISO 26262 application in SASHA, will be 
introduced. The ArKItect tool supporting this 
methodology is detailed followed by the introduction 
of the TLM language used for microcontrollers 
design and validation within SASHA developments. 

2. The safety critical automotive challenge 

2.1 safety critical systems in automotive 
Systems are safety critical, if their failure may have a 
consequence on the human life. Depending on 
severity, exposure and controllability of a failure 
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different levels of automotive safety integrity are 
defined (ASIL = Automotive Safety Integrity Level). 
Levels range from A to D, with criticality increasing 
from A to D. Depending on this level, certain rules of 
development and documentation have to be 
followed. 
Examples for safety critical systems are obviously 
braking, steering and motor control, but also 
functions like lighting and windscreen cleaning. 
These “basic” functions are used by driver 
assistance systems (DAS) like autonomous parking 
systems, adaptive cruise control or emergency 
braking. 
The development of such systems needs today 
years of validation. Validation driving of a “simple” 
adaptive cruise control (ACC) system needs more 
than 3 man years of driving on the roads. ACC is 
simple in the way that it does not address extreme 
situations. Only a certain percentage of the braking 
force is applied, distances to other cars are 
comfortable and the driver has a lot of time to react 
in hazardous situations. However, each time a new 
application is created, new tests have to be 
performed and non-regression has to be assured 
between software and hardware modifications. ACC 
has started in premium vehicles and it took some 
time to arrive in lower segments. Today, ACC is a 
common option in many vehicles. 
The development of a system that goes further 
towards “responsibility” of the technical function 
needs obviously more validation and re-use become 
more crucial. 
Electric vehicles offer today the possibility to brake 
electrically up to a certain point, where a mechanical 
brake needs to add braking force. We all have 
followed with attention the success but also the 
difficulties of electric and hybrid cars today already 
available on the market.  
Further significant improvements and the 
introduction of new topologies will further increase 
the variety of solutions. 
For example the introduction of electric vehicles with 
wheel motors and integrated stability control offer the 
possibility to limit mechanical braking to an 
emergency brake.  
In case of accident, the state of art of technology, 
development and the results of the validation have to 
be proven meaning a lot of documentation to be 
presented. Everything has to be checked. In many 
cases original equipment manufacturers (OEM = car 
manufacturer) have to assemble at posterior their 
documentation for legal cases. Following 
harmonized rules and adapted tools help to find 
synergies between developments and re-use of 
already existing elements. 

2.2 ISO26262 model in SASHA project 

The structure of the standard is already process 
oriented. It follows the V model activities. So each 
clause can be easily translated into a task. The 

standard covers the whole life cycle of the system 
development. It includes the system view which is 
then broken down into hardware and software views. 
The safety aspects during the production, the 
maintenance and the decommissioning are also 
taken into account.  

 
In order to prove the compliance of the development 
process to the standard all work has to be 
documented. Within the SASHA project the focus 
was at first on the description of all tasks for 
traceability. 
 
During the development process proposed in 
SASHA, all these activities and tasks are then 
implemented inside the tool ArKItect. The process 
and the different views of the system are merged 
inside this tool. Current tools on the market usually 
separate the modelling of the process and the 
modelling of the system. ArKItect can merge these 
both views into a single tool. In fact each process 
step should correspond to a specific view of the item. 
Each requested information in the work products are 
captured from the modelling artefact of the item. The 
tool should at the end be able to generate 
automatically all requested documents and then 
deliver the safety case proving that the system 
respects the safety goals.  
 
An additional feature of the tool is the tailoring of the 
development of safety process according to the 
category of the item (proven in use, modification of 
an existing item or completely new item).  
 
SASHA will also study the possibility to integrate the 
safety process of the standard inside an existing 
development process (SPICE, V model …).  

2.3 Semiconductor new horizon 

Automotive market demands are driving the 
automotive semiconductor technologies to 
continuously innovate. 
 
Next-generation automotive systems will increasingly 
require multiple power technology mix, more 
computational performance, better power efficiency 
and greater memory content to meet market 
requirements in automotive applications, such as 
functional safety, tougher emission standards or 
ADAS (Advanced Driver-Assistance Systems) 
solutions. 
 
Overall semiconductor technology shrinks offer 
opportunities for new automotive system 
architectures compliant with new stringent safety 
automotive standard such as ISO26262. It goes from 
an optimized system partitioning between smart 
power devices and full digital embedded flash 
microcontrollers to the duplication of a complete 
subsystem to match toughest safety expectation. 
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Semiconductor companies have been offering 
automotive grade components for years. The new 
global trend is to offer "fit for purpose" ASIL level 
automotive grade components. This new product 
range will ease the development and certification 
process of automotive safety critical system 
suppliers. 
 
Multiple core architecture devices for automotive 
embedded systems are becoming a standard, 
thanks also to advance processes such as 55nm 
automotive embedded flash process. For complex 
systems or sub systems, it is now very important to 
offer to developers virtual models of those complex 
systems in order to allow fast development and 
integration between multiple teams. 
Virtual models are also a convenient environment for 
fault injections to monitor the reactions of the 
systems. One objective of safety critical system is to 
be able to detect faults and to confine them. 

3. SASHA use case 

Diesel Engine Management controllers have 
embedded safety related functions especially the 
torque structure which from the Driver’s accelerator 
pedal will determine the correct fuel injection to 
provide engine and vehicle acceleration .  
The unwanted vehicle acceleration through engine 
torque increase event has lead to system and 
software architectures which now embed software 
monitoring functions in the ECU. 

 
 
Figure 1 : Global ECU Torque Control 
 
The purpose of the Monitoring Concept as shown in 
Figure 1 is to monitor the main application to prevent 
the driver from unwanted acceleration. Moreover its 
second purpose is to monitor the torque demand 
computed by main application torque structure.  
 
That monitoring concept includes the actual torque 
calculation, the permissible torque calculation, the 
torque comparison and the fault management and 

related default modes as describe precisely in Figure 
2 & 3. 
 
To avoid single CPU errors, monitoring requires 
multiple levels and especially an independent control 
of the main controller. (ASICs or secondary micro). 
 

 
Figure 2 : Torque Monitoring Concept / Functional 
View 
 

 
Figure 3 : Torque Monitoring Concept / Abstraction 
Level 
 
Dual core CPU are an opportunity to reduce cost of 
multiple components, increase quality and also 
provide potential new solutions for monitoring 
concept architecture depending on multicore 
symmetric or asymmetric design. However, inside 
the SASHA project, there is no intent to modify the 
actual monitoring concept solution and architecture, 
but to use this function as a base for validating the 
process. 
 
The Torque structure being linked to a set of major 
functions, only a partial set of those modules will be 
used for validating the process.  
 
With ISO26262, the various safety related events 
and safety goals are defined and monitored along all 
development phases of the software through 
requirements traceability, from Design to validation. 
Conformance to the standard will require specific 
activities, work products and traceability. 
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Although our example is already an existing support 
for the ISO26262, other unwanted events, leading to 
safety goals, will be brought up as requirements, 
being in the Engine Management Systems or other 
vehicle ECU’s in power train or body controllers.  

4. Model Based System Engineering in an ISO 
26262 context 

4.1 New challenges for safety-critical systems 
development 
 
In the safety lifecycle proposed by ISO 26262, safety 
is taken into account since the very beginning of the 
system development. Therefore, mechanisms have 
to be set up to support the management of safety 
objectives throughout the project realization, in order 
to ensure their monitoring and consistent refinement. 
One of the emerging challenges in this context, is to 
be capable of efficiently navigate among the 
granularity levels needed for system design and 
validation, and to adapt and clarify the safety 
requirements for the various detail levels. ISO 26262 
provides processes and requirements to frame the 
design of safety-related systems in road vehicles. It 
informs about the appropriate method to be used, 
corresponding to the desired target ASIL deploying 
the automotive safety lifecycle using semi formal 
modelling approaches. Moreover, the constraints 
linked to the development of future safe vehicle 
functions are well known: higher complexity, shorter 
time to market, restricted costs, high confidence 
level expected. Moreover, their increasing 
complexity stresses new issues as facilitating the 
communication between domain-specific experts’ 
teams, organizations, stakeholders, certification 
representatives, enhancing studies experience 
capitalization or ensuring consistency between the 
diverse system views exploited during the 
development cycle. Therefore, the various tasks 
involved in the safety lifecycle shall be realized with 
elaborated engineering practices supporting all 
stakeholders’ actions. Consequently, partners of the 
SASHA project assume that Model Based System 
Engineering (MBSE) practices are relevant to fulfil 
project aims and in particular to develop the SASHA 
framework supporting ISO 26262 deployment. In this 
section, the MBSE concept used in SASHA will be 
explained. In particular, the granularity level to reach 
in the system modelling and the management of 
safety requirements will be addressed.     
 
4.2 Model Based System Engineering in SASHA 
project 
 
MBSE is the formalized application of modelling to 
support system requirements, design, analysis, 
verification and validation activities beginning in the 
conceptual design phase and continuing throughout 
development and later life cycle phases [4]. MBSE 

enhances classic System Engineering in many 
domains as communication, preciseness of analysis, 
results integration or produced knowledge reuse. 
The expected benefits of MBSE deployment have 
been summarized in [1]: 

 
• Reduced development risks. 
• Enhanced communication. 
• Improved quality. 
• Increased productivity. 
• Enhanced knowledge transfer. 

 
A methodology is needed to implement MBSE. A 
MBSE methodology can be characterized as the 
collection of related processes, methods, and tools 
used to support the discipline of systems 
engineering in a “model-based” or “model-driven” 
context [2]. This definition raises the key role of the 
system model, in direct contact with the methods 
forming the methodology. In the terminology utilized 
here the methods are exposing the techniques to 
use to realize the tasks defined in the System 
Engineering process. Models and tools are 
supporting the execution of the method. A valuable 
survey of MBSE methods can be found in [2]. [1] has 
drawn up the organization of MBSE models and 
tools as shown in figure 2. This organization 
illustrates the central place of a model offering 
several views on the system: the architecture, the 
behavior, requirements and constraints explicating 
physical or trade off study relations verified by the 
system. The central model is a gateway towards the 
specific activities as detailed conception concerning 
domain specific development and analysis tasks 
including the dependability and safety criterion 
observation. The model is also used to reflect and 
respond to requirements emanating from 
stakeholders, and is a basis to extract viewpoints 
serving to produce contractual and normative 
documents. The central model is the crossroads 
between requirements, the detailed solutions to 
match them, the analysis to assess their completion 
and the documentation tracking their expression and 
fulfillment. 
 
To apply these concepts to the SASHA project, it 
was necessary to identify the required models for 
system description and the way to apply ISO 26262 
requirements on them. Therefore, a combination of 
languages, data structures and tools must be 
provided as SASHA projects outputs.The data 
structures express the set of artefacts needed for the 
standard application, each of them represent a 
concept to manipulate (e.g. a hardware component, 
a requirement, a test), they are characterized by a 
set of attributes (e.g. for requirements: associated 
safety goal, ASIL, associated components ...).  
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Figure 4: MBSE organization (adapted from [1]) 
 
The languages are employed to declare the 
preceding artefacts and the tools are provided to 
create the modelling elements, represent, exploit, 
analyse, maintain and manage them. 
 
Within the SASHA project, the ArKItect tool is 
supporting the realization of the central model. The 
tool is based on customizable modelling artefacts. It 
means that concepts used in the modelling are freely 
defined to conform to SASHA needs. Therefore, we 
are constructing a SASHA metamodel comprising 
the entities we need to execute ISO 26262 activities. 
Particularly, the central model is to be used to initiate 
the validation and detailed design steps. Concerning 
microcontroller architecture definition, thanks to the 
partners’ expertise, we decide to couple the ArKItect 
model with TLM definitions (presented in section 6). 
This integration will illustrate the deployment of a 
MBSE approach, combining the project leading 
model and domain specific representations for 
hardware and software design and validation.   

5. Developments tools / Arkitect 

Traditionally, requirements capture and elicitation 
follows a top-down approach, while the design and 
implementation of trustworthy systems follows a 
bottom-up approach, enabling systems designers 
and builders to certify desirable safety invariants of 
the system in a holistic manner. 
 
Given that a norm like 26262 involves many 
stakeholders, at different levels, to take safety into 
account since the very beginning of the system 
design and development, a cooperative tool is 
necessary to address such system complexity, by 
following the processes provided by the norm. 
ArKItect is an innovative tool that fulfils these needs. 
It is a graphical, user-friendly, and type-based tool 

that assists system designers 
and builders in the entire 
design and development 
cycle. Its flexibility enables it 
to implement the norm 26262 
for any system, especially 
engine management system 
as in SASHA project. In this 
section, we overview 
ArKItect, highlight its main 
features, and illustrate how it 
could be used in applications.  
 
5.1 ArKItect Features 
ArKItect is like SysML, a 
graphical tool used to support 
system engineering. It is 
based on system engineering 

fundamentals and standards:  
 

• ISO 15288 and EIA632  
• System theory: The architecture of 

complexity [5] 
Moreover it has some specific properties that could 
be noted, since it can: 
 

• Represent graphically a system architecture 
hierarchically 

• Represent graphically requirements 
(customer needs and system requirements) 

• Interface with other tools used to support 
system engineering (Word, Excel, XML, 
Doors, Matlab, Simulink…) 

It is also a graphics editor for the D2 level Domain 
Specific Diagram Languages (DSL) which can 
represent all types of diagrams [6]. 
 
D2 – 
Diagram 
DSL 

At the D2 level, the Diagram DSL 
represents the language for describing any 
type of diagrams. It is solution - and 
platform- independent and contains all 
criteria understandable by a user who 
wants to specify diagrams. This level is 
problem-oriented for specifying diagrams. 

D1 – 
Diagram 
DSL 
instance 

At the D1 level, a Diagram DSL instance 
describes a type of diagram. It contains the 
view model description for producing a 
type of diagram that is model elements to 
be displayed with their layout properties. 
This description respects the language 
defined by the Diagram DSL. This level 
contains all data for generating tools 
producing diagrams. 

D0 – 
Diagram 

At the D0 level, we have diagrams 
expected by end-users in their modeler. 

 
In ArKItect, D2 corresponds to the rule matrix, D1 
corresponds to the views, and D0 corresponds to the 
architecture or model represented. 
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5.2 SASHA Project 
A view is dedicated to the norm 26262 with all its 
processes. 
 
In Fig. 5 all processes and deliverables are 
represented. Each deliverable is generated 
automatically, provided that objects related to the 
deliverable are represented. 
Using ArKItect views-feature, the system is 
represented at its different levels, depending on the 
degree of atomicity needed. This is done by 
modeling the system hierarchically, representing the 
susbsytems and components. These components 
could be software and/or hardware components.  
Thanks to this feature, software and hardware 
components can be treated independently. For each 
component/subsystem, the corresponding process in 
the norm 26262 is applied.  Tests at each level are 
defined, errors injected, and fault trees obtained. 
Results are represented in the view, and 
corresponding deliverable is generated. By this way, 
all the documents needed are generated 
automatically. 

Figure 5: ArKItect processes view 
 
Finally, by using ArKItect collaborative feature, 
different stakeholders can involve at the same time 
from different places to work on the project. This 
enables suppliers from different ranks and 
constructors to work together efficiently. 

6. The Transaction Level Modelling (TLM) 
approach 

6.1 Key features of TLM models 
 
Transaction-level modelling (TLM) is a novel 
technique motivated by the practical need of 
providing an early virtual prototype [7]. These 
models are written in SystemC [8], a class library on 
top of C++, using the TLM standard communication 
APIs [9], with the following features: 

1. High simulation speed: 100x to 1000x 
improvement compared to RTL as a matter of 
thumb are observed, enabling pre-silicon 
software development and interactive activities 
(e.g. software debug) 

2. Model accuracy: bit accuracy and register 
accuracy are required, as well as the 
representation of the system synchronization 
events [10]. Timing accuracy is not always a 
strong requirement: functional software 
development or functional validation may be 
operated with loosely timed models, whereas 
time accurate models may be required to 
optimize software implementation or deal with 
some real-time aspects of the system. 

3. Early availability: to enable pre-silicon activities, 
high level models must be available early. The 
usual target is 6 months before the availability 
of RTL models 

 
6.2 Use models 
Virtual prototypes based on the TLM approach are 
used for the following internal activities: 

• Functional verification. 
Reliability of the SoCs is 
obviously a key factor, 
and is required to gain 
the time to volume 
challenge. Therefore, 
improving the functional 
verification process, 
either by reducing the 
verification time, or 
extending the verification 
coverage is a strategic 
axis. Moreover, getting a 
unified verification 
environment at different 
levels of abstraction 
(RTL, TLM), improves 
the process by reusing 
the same test bench 

either on the TLM and the RTL models.  
• Embedded software development.  To improve 

the overall design cycle, early embedded software 
development enables real hardware/software co-
design. The gain is twofold: first, early software 
development helps to identify specification 
misunderstanding between software and 
hardware teams, by sharing the same executable 
specification. Second, software developers are 
able to develop and debug their embedded code 
on a simulation platform that is easier to 
instrument than the real hardware. This platform 
can be delivered to all and every developers, and 
can be used for debug purpose, even when the 
actual chip is available. 

• System analysis. In an early phase of the design 
process, it is also very useful to investigate 
different functional scenarios. 
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TLM models might also be delivered to the end 
customer, as it will enable also its pre-silicon 
activities, like development of compliance tests or 
anticipation of system derivatives. 
 
6.3 Contribution of TLM models to safety-critical 
system development  
 
Developing a TLM model is an important step to get 
a non ambiguous, executable specification of the 
System-on-chip. It helps identifying potential 
inconsistency in the system specification, and it 
avoids misinterpretation of the specification by the 
various project stakeholders (architects, software 
and hardware design teams, etc).  
A key question when developing such models is 
about the consistency between the TLM models, 
other views of the same specification at other levels 
of abstraction, and the associated software stack.  
Using the IP-Xact standard [11], it is now possible to 
share a representation of an IP and generate header 
files targeting software activities and TLM model 
skeleton. The model itself is used as a golden model 
for functional verification of the RTL IP. As a 
consequence, non regression test suites can be 
applied both on the TLM model and RTL IP to 
ensure functional equivalence. Use of formal 
methods is also considered to validate the model 
whatever the input scenario [12,13]. 
 
In a safety-critical system development, faithfulness 
of TLM model is of major importance. Indeed, the 
execution of the application software on top of the 
model should match at least with the behaviour 
observed on the real silicon. A key advantage of the 
model is its observability and controllability, as it will 
help software teams to validate the software stack. It 
is also possible to enable some advanced validation 
mode, where corner cases can be more easily tested 
than on the silicon.  
To increase the validation of safety-critical systems, 
TLM models can also be equipped with fault models, 
to test software robustness. Faults can be injected 
either on the memory subsystem or on the 
interconnect model when transactions are going 
thru. Fault models are built in tight cooperation with 
technologists, who are collecting experimental 
results related to physical parameters.  
Last but not least, TLM models can also be used to 
get prepared in a certification process, and anticipate 
some certification steps with certification authority on 
the model, before the equipment is effectively 
available.  

7. Results so far 

The group has reached a common understanding 
and interpretation of the ISO26262. The standard 
has been translated into a spreadsheet and 
modelized in a flowchart diagram. 

The used case has been defined with a focus on the 
safety critical feature. Safety related events and 
safety goals have been listed. 
Various tools have been exchanged within the 
group, ArKItect, component models, virtual 
development environment platforms. Training 
sessions have been done on ArKItect, electronics 
component modelization, virtual platform usage. 
Focus has been done on methodology re-use. 

8. Conclusion 

Still at the early stage of the SASHA project, new 
tools for automotive safety critical system 
development are showing promising results. 
ArKItect is offering a unique environment for 
specification, model implementation development 
and validation compliant with latest automotive 
safety standard. 
TLM is a technique to reduce development time and 
cost for microcontroller implementations. Such 
development methodology has been already 
successfully deployed and applied in other industrial 
sectors such as telecom or consumer. For 
automotive domain it is a suitable environment to 
simulate fault injections and monitor the system 
behaviour under stress. The generally observed 
anticipation time is about 6 months. 
SASHA is a project involving complementary 
partners leveraging on MBSE know-how in a 
cooperative and cross experienced environment 
contributing to a better understanding of the new 
ISO26262. 
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